Summary of Effect Sizes and their Links to Inferential Statistics

R. Michael Furr
Department of Psychology
Wake Forest University

1. Definitions of effect sizes
 1.1. Effect sizes expressing the degree of association between two variables (r)
 1.2. Effect sizes expressing the degree of difference between means (d, g)
 1.3. Effect sizes expressing the “proportion of variance explained” (R^2, η^2, ω^2)
 1.4. Effect sizes for proportions

2. Transforming between effect sizes
 2.1. Computing r from d and g
 2.2. Computing d from r and g
 2.3. Computing g from r and d

3. Computing inferential statistics from effect sizes
 3.1. Computing X^2 from r
 3.2. Computing t from r, d, and g
 3.3. Computing F – with two means
 3.4. Computing F – with more than two means

4. Computing effect sizes from inferential statistics
 4.1. Computing r from X^2, t, and F
 4.2. Computing d from t
 4.3. Computing g from t
 4.4. Computing η^2 and ω^2

Much of this is based on:

Please feel free to contact me if any of these formulae seem incorrect – it is possible that typographical errors may have been made.
Mike Furr
furrrm@wfu.edu
1. EFFECT SIZES: DEFINITIONS

1.1 Degree of association between two variables (Correlational Effect Sizes)

\[r = \Phi = r_{pb} = \frac{\sum Z_X Z_Y}{n} = \frac{\sum \left(\frac{X - \bar{X}}{\sqrt{\sum (X - \bar{X})^2}} \right) \left(\frac{Y - \bar{Y}}{\sqrt{\sum (Y - \bar{Y})^2}} \right)}{n} = \frac{\sum (X - \bar{X})(Y - \bar{Y})}{\frac{n}{\sigma_x \sigma_y} = \frac{s_{xy}}{\sigma_x \sigma_y}} \]

NOTE: Some of these formulas use \(n \) in the denominator of the correlation, but they are sometimes written with \(n-1 \) rather than \(n \) in the denominators. This difference does not matter as long as either \(n \) or \(n-1 \) is used in all parts of the equation (ie, in the standard deviations, z-scores, covariance, etc).

When \(r \) is a point-biserial correlation (\(r_{pb} \)), it is based on a dichotomous grouping variable (\(X \)) and a continuous variable (\(Y \)). In this case, the equation can also be written as:

\[r = \sqrt{p_1 p_2 \left(\bar{Y}_1 - \bar{Y}_2 \right)} \]

where \(p_1 \) and \(p_2 \) are the proportions of the total sample in each group, \(\left(\bar{Y}_1 - \bar{Y}_2 \right) \) is the difference between the groups’ means on the continuous variable (\(Y \)), and \(\sigma_y \) is the standard deviation of variable \(Y \). Note that this is Equation 5 in McGrath and Meyer (2006), and note that the direction of the correlation depends on which group is considered group 1 and which is considered group 2.

Z transformation of a correlation

\[z_r = r' = \frac{1}{2} \log_e \left[\frac{1+r}{1-r} \right] = \frac{1}{2} \left[\log_e (1 + r) - \log_e (1 - r) \right] \]

Where \(\log_e \) is the natural log function (LN on some calculators)

To transform back from \(z_r \) (\(r' \)) metric to \(r \) metric

\[r = \frac{e^{2z_r} - 1}{e^{2z_r} + 1} \]

Where \(e \) is the exponent function (e\(^x\) on some calculators)

Effect size for the difference between correlations

Cohen’s \(q = Z_{r1} - Z_{r2} \)
1.2 **Degree of difference between two means (Effect sizes a la d)**

1.2.1. For comparing means from two groups:

Cohen’s $d = \frac{\bar{X}_1 - \bar{X}_2}{\sigma_{\text{pooled}}}$

Hedges’s $g = \frac{\bar{X}_1 - \bar{X}_2}{s_{\text{pooled}}}$

Glass’s $\Delta = \frac{\bar{X}_1 - \bar{X}_2}{s_{\text{control group}}}$

Where

\[\sigma_{\text{pooled}} = \sqrt{\frac{(n_1)\sigma_1^2 + (n_2)\sigma_2^2}{n_1 + n_2}} \quad \text{and} \quad s_{\text{pooled}} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \]

and

\[\sigma_{\text{pooled}} = s_{\text{pooled}} \sqrt{\frac{n_1 + n_2 - 2}{n_1 + n_2}} \]

and

\[s_{\text{pooled}} = \frac{\sigma_{\text{pooled}}}{\sqrt{\frac{n_1 + n_2 - 2}{n_1 + n_2}}} = \frac{s_{\text{pooled}}}{\sqrt{\frac{N - 2}{N}}} \]

You may also see σ_{pooled} referred to as σ_{within}, and s_{pooled} referred to as s_{within} or as $\sqrt{\text{MS}_{\text{within}}}$

1.2.2 The logic of d and g can be applied when comparing one mean to a population mean (e.g., one sample t-test), such that:

\[d = \frac{\bar{X} - \mu}{\sigma_X} \]

\[g = \frac{\bar{X} - \mu}{s_X} \]

where μ is the null hypothesis population mean

1.2.3 The logic of d and g can be applied when comparing two correlated means (e.g., repeated measures t-test, paired samples t-test)

\[d = \frac{\bar{D}}{\sigma_D} \]

\[g = \frac{\bar{D}}{s_D} \]

where \bar{D} is the mean difference score and σ_D and s_D are standard deviations of the difference scores
1.3 “Variance accounted for” R^2, Eta squared (η^2), and omega squared (ω^2)

$$R^2 = \eta^2 = \frac{SS_{EXPLAINED}}{SS_{TOTAL}} = \frac{SS_{BETWEEN}}{SS_{TOTAL}}$$

For a specific effect (i.e., in a study with multiple IVs/predictors) $R^2 = \eta^2 = R^2_{\text{EFFECT}} = \eta^2_{\text{EFFECT}} = \frac{SS_{\text{EFFECT}}}{SS_{TOTAL}}$

Omega squared for an effect $= \omega^2_{\text{EFFECT}} = \frac{\sigma^2_{\text{EFFECT}}}{\sigma^2_{\text{TOTAL}}} = \frac{SS_{\text{EFFECT}} - df_{\text{EFFECT}}MS_{\text{ERROR}}}{SS_{TOTAL} + MS_{\text{ERROR}}}$

1.4 Effect sizes for proportions

Cohen’s $g = p - .50$

where p estimates a population proportion

$d' = p_1 - p_2$

where p_1 and p_2 are estimates of the population proportions

Cohen’s $h = \arcsin p_1 - \arcsin p_2$

Pr obit $d' = Z_{p_1} - Z_{p_2}$

where Z_{p_1} and Z_{p_2} are standard normal deviate transformed estimates of population proportions

Logit $d' = \log_e \left[\frac{p_1}{1-p_1} \right] - \log_e \left[\frac{p_2}{1-p_2} \right]$
2. TRANSFORMING BETWEEN EFFECT SIZES

2.1 Computing r

2.1.1 Computing r from Cohen’s d

For one group and for two correlated means (ie repeated measures or paired samples)

$$r = \sqrt{\frac{d^2}{d^2 + 1}} = \frac{d}{\sqrt{d^2 + 1}}$$

For two independent groups

$$r = \sqrt{\frac{d^2}{d^2 + \frac{1}{p_1 p_2}}}$$

Where p_1 is the proportion of participants who are in Group 1 and p_2 is the proportion in Group 2

Note, for equal sample sizes ($p_1 = p_2 = .50$), this simplifies to: $r = \sqrt{\frac{d^2}{d^2 + 4}}$

2.1.2. Computing r from Hedge’s g

For one group and for two correlated means (ie repeated measures or paired samples)

$$r = \sqrt{\frac{g^2}{g^2 + df/N}} = \sqrt{\frac{g^2}{g^2 + N - 1/N}}$$

For two independent groups

$$r = \sqrt{\frac{g^2 n_1 n_2}{g^2 n_1 n_2 + (n_1 + n_2)df} = \sqrt{\frac{g^2 + df/N p_1 p_2}{g^2 + N - 2/N p_1 p_2}}}$$

Where p_1 is the proportion of participants who are in Group 1 and p_2 is the proportion in Group 2

Note, for equal sample sizes ($p_1 = p_2 = .50$), this simplifies to: $r = \sqrt{\frac{g^2}{g^2 + 4(N - 2/N)}}$
2.2 Computing d

2.2.1 Computing d from r

For one group and for two correlated means (ie repeated measures or paired samples)

\[d = \frac{r}{\sqrt{1 - r^2}} \]

For two independent groups

\[d = \frac{r}{\sqrt{1 - r^2}} \left(\frac{p_1 p_2}{1 - r^2} \right) \]

Where \(p_1 \) is the proportion of participants who are in Group 1 and \(p_2 \) is the proportion in Group 2

Note, for equal sample sizes (\(p_1 = p_2 = .50 \)), this simplifies to:

\[d = \frac{2r}{\sqrt{1 - r^2}} \]

2.2.2 Computing d from Hedge’s g

For one group and for two correlated means (ie repeated measures or paired samples)

\[d = g \sqrt{\frac{N}{\text{df}}} = g \sqrt{\frac{N}{N-1}} \]

For two independent groups (regardless of the relative sample sizes)

\[d = g \sqrt{\frac{N}{\text{df}}} = g \sqrt{\frac{N}{N-2}} \]

2.3 Computing g

2.3.1 Computing g from r

For one group and for two correlated means (ie repeated measures or paired samples)

\[g = \frac{r}{\sqrt{1 - r^2}} \sqrt{\frac{\text{df}}{N}} \frac{\sqrt{N-1}}{\sqrt{N}} \]

For two independent groups

\[g = \frac{r}{\sqrt{p_1 p_2 \left(1 - r^2\right)}} \sqrt{\frac{\text{df}}{N}} \frac{\sqrt{N-2}}{\sqrt{N}} \]

Where \(p_1 \) is the proportion of participants who are in Group 1 and \(p_2 \) is the proportion in Group 2

Note, for equal sample sizes (\(p_1 = p_2 = .50 \)), this simplifies to:

\[g = \frac{2r}{\sqrt{1 - r^2}} \sqrt{\frac{\text{df}}{N}} = \frac{2r}{\sqrt{1 - r^2}} \sqrt{\frac{N-2}{N}} \]
2.3.2 Computing g from Cohen’s d

For one group and for two correlated means (i.e., repeated measures or paired samples)

$$g = d \sqrt{\frac{df}{N}} = d \sqrt{\frac{N-1}{N}}$$

For two independent groups (regardless of the relative sample sizes)

$$g = d \sqrt{\frac{df}{N}} = d \sqrt{\frac{N-2}{N}}$$

2.4 Transforming between eta squared (η^2) and omega squared (ω^2)

η^2 for an effect $= \eta^2 = \frac{df_{effect} + \frac{nko^2}{1-\omega^2}}{\frac{1}{df_{error}}} \left(\frac{1}{1-\omega^2} \right) + 1$

Where n is the number of individuals per group, and k is the number of groups for the effect.

ω^2 for an effect $= \omega^2 = \frac{\frac{df_{error} \eta^2}{1-\eta^2} - df_{effect}}{\left(\frac{df_{error} \eta^2}{1-\eta^2} - df_{effect} \right) + nk}$
3. COMPUTING SIGNIFICANCE TESTS FROM EFFECT SIZES

Recall, \[\text{Inferential test statistic} = \text{Effect size} \times \text{Size of Study} \]

3.1 For a 2 x 2 Contingency table

\[\chi^2 = Z^2 = r^2 N \]

3.2 For a t-test

3.2.1 T from r

This is appropriate for any kind of t-test:

\[t = \frac{r}{\sqrt{1 - r^2}} \sqrt{df} \]

3.2.2 T from Cohen’s d

3.2.2.1 For a One-sample t-test or correlated means t-test

\[t = d \sqrt{df} = d \sqrt{N - 1} \quad \text{where} \quad d = \frac{\bar{X} - \mu}{\sigma_X} \quad \text{or} \quad d = \frac{\bar{D}}{\sigma_D} \]

3.2.2.2 For an independent groups t-test

\[t = d \sqrt{\frac{n_1 n_2}{(n_1 + n_2)}} \sqrt{df} = d \sqrt{P_1 P_2 df} = d \sqrt{P_1 P_2 (N - 2)} \]

Where \(P_1 \) is the proportion of participants who are in Group 1 and \(P_2 \) is the proportion in Group 2.

Note, for equal sample sizes (\(P_1 = P_2 = .50 \)), this simplifies to:

\[t = d \sqrt{\frac{df}{2}} = d \sqrt{\frac{N - 2}{2}} \]

3.2.3 T from Hedge’s g

3.2.3.1 For a One-sample t-test or correlated means t-test

\[t = g \sqrt{N} \quad \text{where} \quad g = \frac{\bar{X} - \mu}{s_X} \quad \text{or} \quad g = \frac{\bar{D}}{s_D} \]

3.2.3.2 For an independent groups t-test

\[t = g \sqrt{\frac{n_1 n_2}{n_1 + n_2}} = g \sqrt{P_1 P_2 N} \]

Where \(P_1 \) is the proportion of participants who are in Group 1 and \(P_2 \) is the proportion in Group 2.

Note, for equal sample sizes (\(n_1 = n_2 = n \) and \(P_1 = P_2 = .50 \)), this simplifies to:

\[t = g \sqrt{\frac{N}{2}} = g \sqrt{\frac{n}{2}} \]

3.3 For an ANOVA (F test)
3.3.1 For an ANOVA with \(\text{df}_{\text{NUMERATOR}} = 1 \) (two independent groups)

\[
F = \frac{r^2}{1-r^2} \left(\text{df}_{\text{error}} \right)
\]

\[
F = d^2 \left(\text{df}_{\text{error}p_1 p_2} \right)
\]

(for equal n study, \(F = d^2 \left(\frac{\text{df}_{\text{error}}}{4} \right) \))

\[
F = g^2 \left(\frac{n_1 n_2}{n_1 + n_2} \right) = g^2 (nkp_1 p_2) = g^2 (Np_1 p_2) \text{ for a one-way ANOVA}
\]

(for equal n study, \(F = g^2 \left(\frac{nk}{4} \right) = g^2 \left(\frac{N}{4} \right) \) for a one-way ANOVA)

\[
F = \frac{\eta^2}{1-\eta^2} \left(\text{df}_{\text{error}} \right)
\]

\[
F = \frac{\omega^2}{1-\omega^2} (nk)+1 = \frac{\omega^2}{1-\omega^2} (N)+1 \text{ for a one-way ANOVA}
\]

3.3.2 For an ANOVA with \(\text{df}_{\text{NUMERATOR}} > 1 \) (more than two independent groups)

\[
F = \frac{\eta^2}{1-\eta^2} \left(\frac{\text{df}_{\text{error}}}{\text{df}_{\text{means}}} \right)
\]

\[
F = \frac{\omega^2}{1-\omega^2} \left(\frac{nk}{k-1} \right)+1
\]
4. COMPUTING EFFECT SIZES FROM SIGNIFICANCE TESTS

4.1 Computing \(r \)

4.1.1 \(r \) from a \(X^2 \) test for a 2x2 contingency table

\[
r = \Phi = r_{pb} = \sqrt{\frac{\chi^2}{n}} = \frac{Z}{\sqrt{n}}
\]

4.1.2 \(r \) from any t test (or F-test with numerator df = 1)

\[
r = \sqrt{\frac{t^2}{t^2 + df}} = \sqrt{\frac{F}{F + df_{error}}}
\]

4.2 Computing \(d \)

4.2.1 \(d \) from a one-sample t-test or correlated means t-test

\[
d = \frac{t}{\sqrt{df}} = \frac{t}{\sqrt{N - 1}}
\]

4.2.2 \(d \) from an independent groups t-test

\[
d = t \left(\frac{n_1 + n_2}{\sqrt{df \cdot n_1 \cdot n_2}} \right) = \frac{t}{\sqrt{p_1 \cdot p_2 \cdot df_{error}}} = \frac{t}{\sqrt{p_1 \cdot p_2 \cdot (N - 2)}}
\]

Which simplifies to \(d = \frac{2t}{\sqrt{df}} \) if the groups have equal \(n \)

4.2.3 \(d \) from an F test based on numerator df = 1

\[
d = \frac{\sqrt{F}}{\sqrt{p_1 \cdot p_2 \cdot df_{error}}} = \frac{\sqrt{F}}{\sqrt{p_1 \cdot p_2 \cdot (N - 2)}}
\]

Which simplifies to \(d = \frac{2\sqrt{F}}{\sqrt{df}} \) if the groups have equal \(n \)
4.3 Computing g

4.3.1 g from a one-sample t-test or correlated means t-test

$$g = \frac{t}{\sqrt{N}}$$

4.3.2 g from an independent groups t-test

$$g = t \sqrt{\frac{n_1 + n_2}{n_1 n_2}} = \frac{t}{\sqrt{p_1 p_2 N}}$$

Which simplifies to $g = \frac{2t}{\sqrt{N}}$ if the groups have equal n.

4.3.3 g from an F test based on numerator df = 1

$$g = \frac{\sqrt{F}}{\sqrt{p_1 p_2 N}}$$

Which simplifies to $g = \frac{2\sqrt{F}}{\sqrt{N}}$ if the groups have equal n.

4.4 Computing η^2 and ω^2

η^2 for an effect = $\eta^2 = \frac{F_{\text{effect}} (df_{\text{effect}})}{F_{\text{effect}} (df_{\text{effect}}) + df_{\text{error}}} = \frac{F_{\text{effect}} (df_{\text{effect}})}{F_{\text{effect}} (df_{\text{effect}}) + df_{\text{error}}}$

ω^2 for an effect = $\omega^2 = \frac{(F_{\text{effect}} - 1)(df_{\text{effect}})}{(F_{\text{effect}} - 1)(df_{\text{effect}}) + nk}$

For F tests with numerator = 1, these simplify to

η^2 for an effect = $\eta^2 = \frac{F_{\text{effect}}}{F_{\text{effect}} + df_{\text{error}}}$

ω^2 for an effect = $\omega^2 = \frac{(F_{\text{effect}} - 1)}{(F_{\text{effect}} - 1) + nk}$